Loading...
Please wait while we prepare your content
Please wait while we prepare your content
Solutions for Mathematics, Class 9, CBSE
Given :
∠BOD = 40°
From figure,
⇒ ∠AOC = ∠BOD (Vertically opposite angles are equal)
⇒ ∠AOC = 40°
Given,
⇒ ∠AOC + ∠BOE = 70°
⇒ ∠BOE = 70° - ∠AOC = 70° - 40° = 30°.
Since, AB is a straight line.
From figure :
⇒ ∠AOC + ∠COE + ∠BOE = 180° [Linear pairs]
⇒ ∠COE + (∠AOC + ∠BOE) = 180°
⇒ ∠COE + (40° + 30°) = 180°
⇒ ∠COE + 70° = 180°
⇒ ∠COE = 180° - 70° = 110°.
⇒ Reflex ∠COE = 360° - ∠COE = 360° - 110° = 250°.
Hence, ∠BOE = 30° and Reflex ∠COE = 250°.
Since,
∠POY = 90°
Line OP is perpendicular to line XY. Hence ∠POY = ∠POX = 90°
Given, a : b = 2 : 3
Let a = 2x and b = 3x, where x is some number.
From figure,
⇒ ∠POX + ∠POY = 180° (Linear pairs)
⇒ ∠POM + ∠MOX + ∠POY = 180°
⇒ a + b + 90° = 180°
⇒ 2x + 3x = 180° - 90°
⇒ 5x = 90°
⇒ x =
⇒ x = 18°.
⇒ a = 2x = 2(18°) = 36°
⇒ b = 3x = 3(18°) = 54°
Since MN is a straight line,
⇒ ∠MOX + ∠XON = 180° (Linear pairs)
⇒ b + c = 180°
⇒ 54° + c = 180°
⇒ c = 180° - 54°
⇒ c = 126°.
Hence, c = 126°.
Given,
⇒ ∠PQR = ∠PRQ = x (let)
From figure,
⇒ ∠PQS + ∠PQR = 180° (Linear pair)
⇒ ∠PQS = 180° - ∠PQR
⇒ ∠PQS = 180° - x .......(1)
From figure,
⇒ ∠PRT + ∠PRQ = 180°
⇒ ∠PRT = 180° - ∠PRQ
⇒ ∠PRT = 180° - x .........(2)
From equations, (1) and (2) we get :
⇒ ∠PQS = ∠PRT
Hence, proved ∠PQS = ∠PRT.
We know that,
Sum of all angles round a point is equal to 360°.
⇒ x + y + w + z = 360°
⇒ (x + y) + (w + z) = 360°
As,
x + y = w + z
⇒ (x + y) + (x + y) = 360°
⇒ 2(x + y) = 360°
⇒ (x + y) = = 180°.
⇒ x + y = 180° and w + z = 180°.
Since the sum of adjacent angles, x and y with OA and OB as the non-common arms is 180° we can say that AOB is a straight line.
Hence, proved that AOB is a straight line.
Since, OR ⊥ PQ
∴ ∠ROP = 90° and ∠ROQ = 90°
∴ ∠ROS = 90° - ∠POS .......(1)
⇒ ∠QOS = ∠QOR + ∠ROS
⇒ ∠QOS = 90° + ∠ROS
⇒ 90° = ∠QOS - ∠ROS .....(2)
Substituting value of 90° from equation (2) in equation (1), we get :
⇒ ∠ROS = (∠QOS - ∠ROS) - ∠POS
⇒ ∠ROS + ∠ROS = ∠QOS - ∠POS
⇒ 2(∠ROS) = ∠QOS - ∠POS
⇒ ∠ROS = (∠QOS - ∠POS)
Hence, proved ∠ROS = (∠QOS - ∠POS).
The figure is shown below:
In the given figure,
Line YQ bisect ∠ZYP.
∴ ∠QYP = ∠ZYQ = x (let) .........(1)
From figure,
⇒ ∠XYZ + ∠ZYQ + ∠QYP = 180° [Linear pairs]
⇒ 64° + x + x = 180° [From equation (1)]
⇒ 64° + 2x = 180°
⇒ 2x = 180° - 64°
⇒ 2x = 116°
⇒ x =
⇒ x = 58°.
⇒ ∠ZYQ = ∠QYP = x = 58°
Reflex ∠QYP = 360° - ∠QYP = 360° - 58° = 302°.
From figure,
⇒ ∠XYQ = ∠XYZ + ∠ZYQ
= 64° + 58°
= 122°.
Hence, ∠XYQ = 122° and Reflex ∠QYP = 302°.
It is given that y : z = 3 : 7
⇒
⇒ y = ........(1)
Let ∠CON = p
Since, CD || EF
∴ p = z (Alternate interior angles are equal) .....(2)
⇒ y + p = 180° (Linear pairs)
⇒ y + z = 180° [From (2)]
Substituting value of y from equation (1), in above equation, we get :
From figure,
AB || CD & MN is transversal
We know that, the sum of co-interior angles are supplementary.
⇒ x + y = 180°
⇒ x + 54° = 180°
⇒ x = 180° - 54°
⇒ x = 126°
Hence, x = 126°.
Given :
AB || CD, ∠GED = 126°.
Since,
EF ⊥ CD.
∴ ∠FED = 90°.
From figure,
⇒ ∠GED = ∠GEF + ∠FED
⇒ ∠GEF = ∠GED - ∠FED
⇒ ∠GEF = 126° - 90°
⇒ ∠GEF = 36°.
AB and CD are parallel lines cut by a transversal GE, thus the pair of alternate interior angles formed are equal.
⇒ ∠AGE = ∠GED
⇒ ∠AGE = 126°.
From figure,
⇒ ∠AGE + ∠FGE = 180° [Linear pairs]
⇒ 126° + ∠FGE = 180°
⇒ ∠FGE = 180° - 126° = 54°.
Hence, ∠AGE = 126°, ∠GEF = 36° and ∠FGE = 54°.
It is given that PQ || ST,
Draw a line XY || ST,
So, XY || PQ, i.e, PQ || ST || XY
Since, PQ || XY & QR is the transversal.
We know that,
Sum of co-interior angles = 180°.
⇒ ∠PQR + ∠QRX = 180°
⇒ 110° + ∠QRX = 180°
⇒ ∠QRX = 180° - 110°
⇒ ∠QRX = 70°.
Also, ST || XY & SR is transversal
⇒ ∠SRY + ∠RST = 180° (Interior angles on the same side of the transversal are supplementary)
⇒ ∠SRY + 130° = 180°
⇒ ∠SRY = 180° - 130°
⇒ ∠SRY = 50°.
From figure,
⇒ ∠QRX + ∠QRS + ∠SRY = 180° (Linear pairs)
⇒ 70° + ∠QRS + 50° = 180°
⇒ 120° + ∠QRS = 180°
⇒ ∠QRS = 180° - 120°
⇒ ∠QRS = 60°
Hence, ∠QRS = 60°.
Given : ∠APQ = 50° and ∠PRD = 127°.
From figure,
PQ is the transversal.
⇒ ∠PQR = ∠APQ (Alternate interior angles are equal)
⇒ x = 50°.
From figure,
⇒ ∠PRQ + ∠PRD = 180° [Linear pairs]
⇒ ∠PRQ + 127° = 180°
⇒ ∠PRQ = 180° - 127° = 53°.
By angle sum property of triangle :
⇒ ∠PQR + ∠QPR + ∠PRQ = 180°
⇒ x + y + 53° = 180°
⇒ 50° + y + 53° = 180°
⇒ y = 180° - 103°
⇒ y = 77°
Hence, x = 50° and y = 77°.
When two parallel lines are cut by a transversal, alternate angles formed are equal.
In optics the angle of incidence (the angle which an incident ray makes with a perpendicular to the surface at the point of incidence) and the angle of reflection (the angle formed by the reflected ray with a perpendicular to the surface at the point of incidence) are equal.
Draw a perpendicular line BL and CM at the point of incidence on both mirrors. Since PQ and RS are parallel to each other, perpendiculars drawn are also parallel i.e, BL || CM.
Since BC is a transversal to line BL and CM, alternate interior angles are equal.
∴ ∠LBC = ∠BCM = x .......(1)
By first law of reflection :
The angle of incidence (the angle which an incident ray makes with a perpendicular to the surface at the point of incidence) and the angle of reflection (the angle formed by the reflected ray with a perpendicular to the surface at the point of incidence) are equal.
By law of reflection, at the first point of incidence B on mirror PQ, we get :
⇒ ∠ABL = ∠LBC = x
⇒ ∠ABC = ∠ABL + ∠LBC
⇒ ∠ABC = x + x
⇒ ∠ABC = 2x ......(2)
By law of reflection, at the second point of incidence C on mirror RS, we get :
⇒ ∠MCD = ∠BCM = x
From figure,
⇒ ∠BCD = ∠BCM + ∠MCD
⇒ ∠BCD = x + x
⇒ ∠BCD = 2x .......(3)
From equation (2) and (3), we get ∠ABC = ∠BCD which are alternate interior angles for the lines AB and CD and BC as the transversal.
We know that, if a transversal intersects two lines such that a pair of alternate interior angles are equal, then the two lines are parallel.
Since, alternate interior angles are equal, we can say AB is parallel to CD (AB || CD).
Hence, proved that AB || CD.